IEEE Workshop on Signal Processing Systems,

(SiPS 2011),

October 4-7 2011, Beirut, Lebanon.

FLEXIBLE PRODUCT CODE-BASED ECC SCHEMES FOR MLC NAND
FLASH MEMORIES

C. Yang', Y. Emre!, C. Chakrabarti® and T.Mudge?

'School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287
Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, M1 48109
{Chengen.yang,yemre,chaitali}@asu.edu, thm@umich.edu

ABSTRACT

Error control coding (ECC) is essential for correcting soft errors in
Flash memories. In such memories, as the number of
erase/program cycles increases over time, the number of errors
increases. In this paper we propose a flexible product code based
ECC scheme that can support ECC of higher strength when
needed. Specifically, we propose product codes which use Reed-
Solomon (RS) codes along rows and Hamming codes along
columns. When higher ECC is needed, the Hamming code along
columns is replaced by two shorter Hamming codes. For instance,
when the raw bit error rate increases from 2.6*1073 to 4.0%1073,
the proposed ECC scheme migrates from RS(127, 121) along rows
and Hamming(72,64) along columns to RS(127, 121) along rows
and two Hamming(39, 32) along columns to achieve the same
BER of 107°. While the resulting implementation has 12% higher

decoding latency, it increases the lifetime of the device
significantly.
Index Terms— Flash memories, multi-level cell, error

correction codes, product codes
1. INTRODUCTION

Flash memories have high storage density and are used in memory
cards, USB flash drives, and solid-state drives [1]. We focus on
multi-level cell (MLC) Flash memories which store 2 or more bits
per cell by supporting 4 or more voltage states. These have even
greater storage density and are the dominant Flash memory
technology.

Unfortunately, NAND Flash memories suffer from write/read
disturbs, data retention errors, bad block accumulation [2]-[4].
Also, reliability of MLC memory is lower due to reduced gap
between adjacent threshold levels. To enhance the reliability and
support longer life-times, combinations of hardware and software
techniques are used. These include wear leveling, bad block
management and garbage collection.

While these Flash management techniques increase the life
time of Flash memories, they are not good at correcting soft errors.
Error correction code (ECC) techniques have now become an
integral part of Flash memory design [5]. While single error
detection/correction codes, such as Hamming codes, have been
used for single-level cell (SLC) Flash memory systems [6], in
recent years, long linear block codes with high error correction
capability are used. These include block codes such as the Bose-

Chaudhuri-Hocquenghem (BCH) code [7]-[9] and its subclass
Reed-Solomon (RS) code [10][11]. Schemes based on
concatenation of BCH codes and Trellis Coding Modulation
(TCM) have also recently been proposed in [12].

Most previous ECCs are based on the fact that the error
distribution is purely random. However, when the cell size
decreases in high capacity MLC Flash memories, probability of
multiple bits upset (MBU) is likely to increase as in SRAM cells
[13][14]. Furthermore, when the number of program/erase cycles is
quite high, the bit error rate increases significantly and the MBU
rate increases as well. Our simulation results show that for 72nm
technology 2-bit MLC[4], when the number of program/erase
cycles increase from 20k to 40K, MBU rate increases from 0.1% to
2.3%.

In this paper, we present product code schemes which use
smaller constituent codes along rows and columns and achieve
higher ECC due to cross parity checking. Such codes have less
hardware overhead and have been successfully used in embedded
SRAM caches [15] and interconnection networks [16]. The
proposed product code schemes have better BER area and timing
performance compared to single BCH and RS codes with
comparable error correction capability. We study the performance
of the ECC schemes for two error models: fully random error
model and hybrid error model with 90% random errors and 10%
MBU errors.

First, we consider BCH+Hamming and RS+Hamming product
codes where BCH/RS is done along the rows followed by
Hamming along columns. Simulation results show that for the
same codeword length and error correction capability,
RS+Hamming has equal performance compared with
BCH+Hamming in the random error model and slightly better
performance in the hybrid error model. RS+Hamming has slightly
higher redundancy (~1%) but is more attractive in terms of
hardware complexity for similar code rate and codeword length. So
in the rest of the paper, we focus on RS+Hamming codes. When
higher error correction capability is needed, we migrate to a
scheme with two shorter Hamming codes, instead of one Hamming
code along the columns. For instance, for 8KB Flash when the raw
BER increases from 2.6*1073 to 4.0*1073, to achieve a BER of
1076, we use RS(127,121) with two Hamming (39, 32) instead of
RS(127,121) with Hamming(72,64). Such a flexibility costs 12%
longer latency and 8% additional parity storage but increases the
lifetime of the device significantly.

trev
Typewritten Text

trev
Typewritten Text
IEEE Workshop on Signal Processing Systems, (SiPS 2011), October 4-7 2011, Beirut, Lebanon.

The rest of the paper is organized as follows. Error source
analysis and error models are presented in section 2. The proposed
product scheme is described in section 3. The simulation results
comparing the candidate schemes are presented in section 4. The
hardware design followed by comparison of area and latency of the
candidate schemes are presented in section 5. The conclusion is
given in section 6.

2. ERROR MODELS

2.1. Error Sources

There are many sources of errors in MLC Flash memories. Single
event upset can be caused by charged particles due to sun activity
or other ionization mechanisms [14]. Multi-bit upsets can occur
due to a high-energy particle hitting at a low incident angle and
striking many cells in a row. Furthermore, in MLC, the voltage
window for threshold of each data state is smaller. Since all the
programmed levels must be allocated in a predetermined sized
voltage window, there is reduced spacing between adjacent
programmed levels, making the MLC memories less reliable. Also,
read/write operations in MLC memory can cause threshold voltage
fluctuations, which inadvertently result in errors in consecutive bits
[2]-[4].

Another important source of error is due to gradual charge
leakage from the floating gate resulting in voltage shift in memory
cells, ultimately resulting in a flip in the data stored in these cells.
Blocks that have been erased many times have a shorter data
retention life than blocks with lower erase/program cycles [2]-[4].
The number of errors due to program/erase wear out increases
from 1* 10~5at 9000 cycles to 8*10~> after 15000 cycles for
MLC Flash [2].

With increased number of program/erase cycles, the number of
MBU errors also increase as demonstrated through these
simulations. First, using the results in [3][17], we model the V;,
distribution with a continuous Rayleigh distribution. The variance
of the distribution is assumed to be a function of number of
program/erase cycles and increases when the number of
program/erase cycles increases. Thus for even Gray coded data,
larger variance would result in MBU errors.

0. 2!

2|
0.015

@

0.01;

MBU Rate

Raw error rate

0.005¢

o
@

10 20 30 10 20 30
Erase/program Cycles (k) Erase/Program Cycle (K)
(a) (b)
Figure 1. (a) Raw BER and (b) MBU probability as a function of
number of erase/program cycles.

In order to determine the V,;, variance as a function of the number
of program/erase cycles, we match the error rate of our model with
experimental results for MLC Flash memory in [2]. Then, we use
curve fitting to extrapolate the results for higher number of
erase/program cycles. Figure 1(a) shows the BER curve versus
number of erase/program cycles. Note that when the number of
erase/program cycles increases from 23K to 27K, the raw BER

increases from 2.2*1073 to 4.0*1073 . Figure 1(b) shows the
MBU probability as a function of the number of program/erase
cycles. This is approximately 2.3% at 40K erase/program cycles.
Since the required endurance life time of NAND Flash memories is
expected at least 105cycles [2], it is reasonable to expect that the
burst error probability in MLC Flash will cross 10% towards the
end of its rated lifetime.

2.2. Error Models

We consider two error models: fully random error model and a
model based on a mixture of random and MBU (or burst) errors.
For burst errors, we assume that the probability of MBU decreases
exponentially as the MBU size increases. These two models are
described as follows.

Random Error Model: Errors are independent and uniformly
distributed among the cells in one page.

Hybrid Error Model: Errors are a combination of random (90%)
and MBU(10%) errors. The probability of a MBU error when the
burst size is x+1 bits is 10% of the probability of a MBU error
when the burst size is x bits. The maximum burst size is 6. Thus
fix) =f;(1)«01*for1<x<6and ¥f_,fi(k)=1.

Hybrid Model

0.7 \
0.6 \
0s \

0.4 \
0.3 \
02 \

——tiybrid Model

MBU probability(MBU/SEU)

MBU size(bits)

Figure 2. MBU probability as a function of MBU size.

Figure 2 shows the MBU probability statistics vs. size of MBU for
the proposed hybrid model; The MBU probability is derived with
respect to SEU, e.g., a 0.1 probability for 2-bit MBU in the burst
model indicates that 10% of all SEU are caused by MBU of size 2.

2.3. Performance Metrics
We compare the different ECC schemes with respect to the
following performance metrics:

Redundancy rate: In an (n, k) linear block code, redundancy
rate is (n — k)/n.

Hardware area: Area of encoder and decoder in ECC block.

Encoding/decoding latency: Time for encoding/decoding data
in one page.

Bit error rate (BER): Number of received bits that have been
altered due to errors, divided by the total number of bits.

3. PRODUCT ECC SCHEMES FOR FLASH MEMORY

Product code is a technique to form a long length code with higher
ECC capabilities using small length constituent codes. Let C; be
a (nq, k) linear code, and let C, be a (n,,k,) linear code. Then, a
(nyn,, k{k,) linear code can be formed where each codeword can
be arranged in a rectangular array of n; columns and n, rows such
that every row is a codeword in C,;, and every column is a
codeword in C,, as shown in Figure 5. This code array can be

formed by first performing row (column) encoding then column

(row) encoding on the data array of size of k; *k, .
parity block in the bottom right is of size (n;

_k1

The cross
)* (nz — k)

and is obtained by encoding the row (column) parity along the
other dimension, i.e., column (row).

Row
Coding(k1,n1)

2

|

Column
Coding(k2,n2)

<7k14h‘ ki

Information
Message

N

N

Row

Parity [

4
n2k2

Column
Parity

Cross
Parity

Figure 3. Product code scheme.

1.D0E+00

100E-01

ng

1.00E-02

1.00E-03

LO0E-04

1.00£-05

Bit Error Rate after Decodi

1.00E-06

1.00E-07

~#-8KB:RS(127,121)+Hamming(72,64)

~4+=8KB:8CH(1023,993,3)+Hamming(72,64)

Bit Error Rate after Decoding

1006400

100E-01

1.00E-02

1.00E03

100E04

1.00E05

1.00E-06

1.00E07

1.00E-08

Memory
Bank

n
Page Buffer

~8=8KBIRS(127,121)+Hamming[72,64)

=+=8KB:BCH(1023,993 3}+Hamming(72,64)

$ &8 P“ z@ § & F & P&
"'ué"@‘&",ﬁ*bad” Q*@“aad"\i . ﬁ‘khﬁﬁ‘fﬁ*%“u*&‘
Ra Bt rror Ratel5% burs] Ratw Bit rtor Rate{5%burst]

(a (b)

$ PP S

Figure 4. Performance comparison between BCH-Hamming and
RS-Hamming in (a) random and (b) hybrid error models.

In order to provide for high error correction capability in Flash
memories, we propose to use a strong code with multiple error
correction capability along at least one of the dimensions. Since
data is stored along rows in memory, we propose to use stronger
ECC along rows so that both random and burst errors can be dealt
with efficiently. Furthermore, we choose a long codeword along
this dimension to provide good coding performance. A
consequence of this is that for fixed page size, the length of the
codeword along the columns is much shorter and use of cyclic or
linear block codes with multiple error correction capability along
columns is an overkill. So we choose Hamming codes along the
columns; they have low overhead and provide enough coding gain
to the product code based scheme.

The simulation results for RS(127, 121)+Hamming(72, 64) and
BCH(1023, 993, 3)+Hamming(72,64) for the two error models are
illustrated in Figure 4. These coding schemes have similar
redundancy overhead, namely 15.8% for BCH-Hamming and
16.5% for RS-Hamming. We see that they provide similar
performance, with RS+Hamming having a slightly better
performance than BCH +Hamming for hybrid error model. This is
to be expected since RS codes have better performance for burst
errors. Also, RS(127,121)+Hamming(72,64) requires less area than
BCH(1023, 99, 3)+Hamming(72,64) for the same throughput.

Row Parity Row Parity
T
=
RS 3 RS

=
w
L
ax @
] l:: > &

El . .

s — :
R ° o=
£ g
E)
=
<«
o o |8
g2 22 |18
£ 3 Z 3 —

Cross Parity Larger Cross Parity

Figure 5. Proposed flexible ECC scheme.

As mentioned earlier, as the number of erase/program cycles in
Flash memories increases, the raw error rate increases [4]. Instead
of designing for the worst case scenario, a mechanism where the
system can provide error correction performance with different
strengths is desirable. For the proposed product scheme, we
suggest adjusting the error correction capability of the Hamming
codes. We keep the same RS codes for row error correction but
split the single Hamming code along columns into two shorter and
hence stronger Hamming codes as illustrated in Figure 5. This is a
lot less complicated than adjusting the strength of the RS codes.
Furthermore, parity matrix of the shorter Hamming code can be
derived from the longer code. This removes the necessity to have
extra circuitry for each Hamming configuration as will be
explained in Section 5.

Area and latency of flexible schemes slightly increase as shown
in the following sections. Also redundancy rate of the flexible
scheme increases due to use of shortened Hamming codes. The
overhead is still a small price to pay compared to the increase in
the error correction capability which is required when MLC
NAND Flash memories get close to the rated lifetime.

4. SIMULATION RESULTS

In this section, we present RS+Hamming product code based
schemes for different page sizes (section 4.1) and compare their
performance (section 4.2).

4.1. Candidate Product Codes

Table I lists possible combinations of RS and Hamming code for
8KB and 16KB page size. For 8KB page, if we use RS(127,121)
along rows, then there are 73 bits in each column. These 73 bits
must include both information bits and parity bits of the Hamming
codes. Thus one Hamming(72, 64) code or two shortened
Hamming(39, 32) codes can be used to process data along column.
Shortened codes contain the same number of parity bits as regular
codes, and extra zero bits are added after information bits during
encoding but not stored in memory [8].

For 16KB page, RS (127, 121) along rows results in 147 bits in
each column in product code. One Hamming (147,138) or two
Hamming(72, 64) codes can be used along columns. Now if
RS(255, 247) is used along rows, then there are 64 bits in each
column. All the 64 bits can be used to form one shortened
Hamming (72, 64) code or two shortened Hamming (39, 32) codes
without unused bits.

Table I. Candidate ECC schemes for 8KB and 16KB page Flash
memories.

Page buffer size RS code (row) Hamming code (column)
RS(255,239)
8KB RS(127,121) One Hamming(72,64)
RS(127,121) Two Hamming(39,32)
RS(255,239)
16KB RS(255,247) One Hamming(72,64)
RS(255,247) Two Hamming(39,32)
RS(127,121) One Hamming(147,138)
RS(127,121) Two Hamming(72,64)

4.2. Performance Comparison

—RS(255,239)
10l |-a-BCH(1023,943,8)
—e—16KB:RS(127,121)+Hamming(147,138)
7 |-e-16KB:RS(127,121)+Hamming(72,64)"2
—+— 16KB:RS(255,247)+Hamming(72,64)

o |-#-16KB:RS(255,247)+Hamming(39,32)*2
I0F |~ 8KB:RS(127,121)+Hamming(72,64) * 3
-+~ 8KBIRS(127,121) +Hamming(39,32)"2

Bit Error Rate after Decoding

9| 2 T T T T L . L L
oo 0.003 0.008 0.007 0006 0.005 0.004 0.003 0.002 0.0t 0.0003
Raw Bit Error Rate

Figure 6. Performance comparison of candidate schemes in random
error model.

— RS(255,239)
10| —a-BCH(1023,943,8)
—8-16KB:RS(127,121)+Hamming(147,138)
E|-®- 16KB:RS(127,121) *Hamming(72,64)*2
—4— 16KB:RS(255,247) +Hamming(72,64)
- 16KB:RS(255,247)+Hamming(39,32)*2
—+8KB:RS(127,121)+Hamming(72,64)
- BKB:RS(127,121)Hamming(39,32)°2 |,
007 0003 0008 0007 OOOG _ 0005 00D 0003 OOl D00 00oDg
Raw Bit Error Rate

Bit Error Rate after Decoding

*

o

Figure 7. Performance comparison of candidate schemes in hybrid
error model.

Figure 6 and Figure 7 show the BER performance of the candidate
schemes for both the random and hybrid error models. For both
error models, product RS codes have much better performance
than BCH (1023, 943, 8) and plain RS (255, 239). While the
performance of BCH code remains the same for both error models,
performance of the plain RS code improves for the hybrid error
models. Figures 6 and 7 also show the gain in performance of
product codes when two short Hamming codes are used instead of
one long Hamming code along columns. Table Il presents the BER
performance of the different schemes for three BER values. Note
that for both the cases, product schemes with two shorter Hamming
codes along columns have one decade lower BER than those with
single long Hamming code along columns. For instance, when raw
BER is 4% 1073, for 8KB paged Flash, BER is improved from
9*107° to 1*107°.

Table Il. Performance comparison between regular and flexible
schemes.

BER
ECC Schemes Raw BER Raw BER Raw BER
at 7*1073 at4*10~3 at1*10~3
8KB: RS(127, 121) + 2*107* 9*107° 3*1078
Hamming(72, 64)
8KB: RS(127, 121) + 5%1075 1*107¢ 3*107°
Hamming(39, 32)*2
16KB: RS(255, 247) + 2*107* 2*107° 7*1078
Hamming(72, 64)
16KB: RS(255, 247) + 8*1075 2*107° 1*1078
Hamming(39, 32)*2
16KB: RS(127, 121) + 3*107* 2*107° 7*1078
Hamming(147,138)
16KB: RS(127, 121) + 7*1075 15%107° 6*107°
Hamming(72, 64)*2

Table I11. Comparison of regular and flexible schemes with respect
to number of erase/program cycles for decoded BER=10"°

ECC Schemes Raw BER Number of
erase/program
cycles(K)
8KB: RS(127, 121) + 2.6*10E-3 25
Hamming(72, 64)
8KB: RS(127, 121) + 4.0%10E-3 27
Hamming(39, 32)*2
16KB: RS(255, 247) + 2.2*10E-3 23
Hamming(72, 64)
16KB: RS(255, 247) + 3.3*10E-3 26
Hamming(39, 32)*2
16KB: RS(127, 121) + 2.2*10E-3 23
Hamming(147,138)
16KB: RS(127, 121) + 4.0%10E-3 27
Hamming(72, 64)*2
Table Il compares the performance of regular and flexible

schemes with respect to number of erase/program cycles when the
target (decoded) BER is 107, This table is derived from Figure 7.
We see that for 16KB memory, when raw BER increases from
2.2%1073 to 4.0*1073, achieve BER of 1076, we move from
RS (127, 121) + Hamming(147, 138) to RS(127, 121) + two
Hamming(72, 64). From Figure 1, we see that this translates to an
increase in the number of erase/program cycles from 23K to 27K.
Thus the flexible scheme helps improve the lifetime of the Flash
memory.

5. HARDWARE IMPLEMENTATION

5.1. RS decoder Structure

In the pipelined decoding flow, for an (n, k) RS code with t error
correction capability, syndrome calculation part takes n cycles due
to the serial input order of code word. The decoding delay of Key-
Equation block depends on the structure of processor element (PE)
array. For achieving the shortest delay, a systolic array of 2t PEs is
used and syndrome sequence is processed once by each PE serially
[18]. For achieving the smallest area, single PE scheme with FIFO
registers is implemented in [19]. Due to data dependence, the
output of single PE cannot be transferred back to its input end
directly and extra FIFO registers are needed. Assuming each PE is
pipelined by a factor of q, 2t PE systolic array has 2t*q pipelined
levels. During processing 2t syndromes, only 2t/(2t*q)=1/q of total
circuitry is active. Thus, this scheme has high throughput but low

workload. The single PE scheme, which is active all the time, has
2t-q extra FIFO registers.

i

i
FIFO i
Less than g i

FIFO
(2tq)

Syndromes PE

I 21PE: |

I |
Figure 8. Proposed Architecture for Key-Equation block

In the proposed scheme, we replace 2t-q FIFO registers of the
single PE scheme with another PE as long as the number of extra
FIFO registers is more than g; the corresponding architecture is
shown in Figure 8. Thus the number of PEs in this scheme
is |2t/q], and 2t- |2t/q] * q FIFO registers are needed. Since all
syndromes need to be processed 2t times, the proposed [2t/q] PE

array needs to iterate [[Zi/tqjl times, and the latency is 2t * [lzi/tqjl

cycles. Such a scheme keeps all PEs active all the time.
Compared to the 2t PE scheme, the proposed scheme has
significantly lower hardware overhead and slightly lower
throughput.

Since the delay of PE block is usually less than that of syndrome
calculation block, we can use multiple syndrome computation units
to “feed” syndromes of different code words to the Key-Equation
circuitry [19]. The delay of Chien&Forney algorithm is usually
less than 20 cycles; it always finishes processing the output of
Key-equation block before receiving data corresponding to the
next codeword.

Table IV. Delay of RS decoders of different code sizes

8KB page 16KB page
ECC scheme Number of Numbe | Decoding Number Decoding
Syndrome rof RS | Latency of RS Latency
Calculation codes (Cycles) codes (Cycles)
Blocks
RS(255,247) 5 33 1843 65 3373
RS(255,239) 2 33 4449 65 8529
RS(127,121) 3 74 3229 148 6404

For a pipelined RS decoder, decoding delay of a page is the sum of
syndrome calculation delay plus the delay of Key-equation and
Chien&Forney blocks of the last codeword. Table IV describes the
decoding delay of different RS codes for 8KB and 16KB page
sizes.

Table V presents the gate counts and the estimated area of the
different RS decoders. These are based on synthesis results in
45nm technology using Synopsys cell library. The area of
syndrome calculation, key equation and Chien&Forney blocks do
not include interconnection between these three blocks.

TableV. Comparison of gate counts and estimated area of RS decoders

5.2. Hamming code Hardware Structure

Here we describe a Hamming code encoder structure which
supports encoding codes with different strengths using the same
hardware [20]. An important characteristic of the Hamming codes
is that the parity generator matrix for shorter code (stronger) can be
derived from the parity generator matrix of the longer code
(weaker).

Consider the parity generator matrix of the (72, 64) code
illustrated in Figure 9. It consists of 8 rows (equal to number of
parity bits). The first half of this code (column 1 to 32) except the
seventh row can be used to generate the parity matrix of (39, 32)
code since the seventh row consists of all zeros. Although we need
additional circuitry compared to single-error-correction-double-
error-detection (SECDED) implementation which is optimized for
a single code, generating codes like this has the ability to adjust
coding strength with slight increase in circuit area.

123456789 . 272829303132333435363738 .. 5B536061626364

1010101
0110011
0001111
0000000
0000000
0000000
1111111
1111111

Figure 9. Parity generation for (39, 32) from (72, 64).

Column Index

000011111

000000000

000000000

For (72, 64), the input bits b1 through b32 are sent to one parity
generator and bits b33 through b64 are sent to the second parity
generator. The combiner combines the two sets of parity bits and
generates parity bits for the (72, 64) code. When higher coding
capability is required, as in (39, 32), the second parity generator
and combiner are disabled and the outputs of the first generator are
output. The decoder can be implemented using a similar
hierarchical structure. Synthesis results of two Hamming
encoder/decoders are listed in Table VI.

Table VI. Synthesis results of Hamming encoder/decoder.

Hamming (72, 64) Hamming (39, 32)
Encoder Decode Encoder Decoder
Cell area(um?) 314 575 314 575
Worst case delay(ps) | 390 1142 270 640
Active power(uw) 230 347 93 455
Leakage power (uw) | 3.12 5.07 3.12 5.07

Syndrome Key-Equation Chien&Forney TotalArea

Calculation (um?)
RS(127,121) | 525*3 1478+FSM 2822 5319
RS(255,247) | 800*5 (1172+FSM)*2+2*8*4 | 5880 7513
RS(255,239) | 1600*2 (1172+FSM)*3+1*7*4 | 7600 12317

5.3. Trade-offs Between Schemes

Table VII presents the area, latency and redundant rate of
candidate product schemes and plain RS code. The area and
latency estimates are based on the results presented in Table V for
RS decoders and Table VI for Hamming decoders. The BER
results are obtained from Figure 7.

For 8KB page size, product code with RS(127,121) with one
Hamming(72, 64) (Scheme B1) or two Hamming(39,32) (Scheme
B2) have the same area. This is because the same circuitry is used
to support both the schemes. The hardware essentially consists of
one RS(127,121) coder and two Hamming(72,64) coders. When
Scheme BL1 is invoked, two columns are processed at a time while
when Scheme B2 is invoked, only part of the Hamming(72,64)

coder is used and only one column is processed at a time. This is
why Scheme B1 has lower encoding/decoding latency compared to
Scheme B2. Scheme B2 has significantly higher BER performance
but requires larger parity storage. But this is a small price to pay
for the increased Flash memory lifetime. Compared to Scheme A,
both Schemes Bl and B2 have significantly better BER
performance, lower area and lower latency but require more parity
storage.

For 16KB page size, Schemes D1 and D2 share the same
circuitry and thus have the same area. The same is true for
Schemes E1 and E2. Schemes D1 and D2 that are based on
RS(255,247) have higher area but lower latency compared to
schemes E1 and E2 that are based on RS(127,121). Also schemes
E1 and E2 have lower parity storage compared to schemes D1 and
D2. Note that for both schemes of type D and E, the performance
improves by almost a decade when two shorter Hamming codes
are used (instead of one larger one) along the columns. Also, all
product schemes (D1, D2, E1 and E2) have significantly better
performance in terms of BER, area and latency compared to the RS
only scheme; the only drawback is the increased parity storage.

Table VII. Area, Latency, BER and Redundancy rate of ECC Schemes.
Notation: RS1 is RS(255, 239), RS2 is RS(127, 121), RS3 is RS(255, 247);
H1 is Hamming(72, 64), H2 is Hamming(39, 32) and H3 is Hamming(147,
138)

Decoding Encoding BER at Redundancy
ECC Schemes Area(um?) Latency Latency 5%1072 Rate

(Cycles) (Cycles)
8 | AIRS1 12317 4449 4335 7 %1073 6.2%
K | B1:RS2+H1 3674 3620 7 %1075 16.5%
B [B2:RS2+H2*2 7097 4118 4064 51076 24%

C:RS1 12317 8529 8415 7 %1073 6.2%

1 | D1:RS3+H1 4393 4335 61075 12.2%
6 | D2:RS3+H2*2 9291 5413 5355 1%1078 25%
K ["E1:RS2+H3 6849 6795 8*10°° 10.5%
B E2:RS2+H1*2 8875 7293 7185 9x10° 15%

6. CONCLUSION

In this paper, we propose product code schemes to handle high
error correction capability of NAND Flash memories with reduced
hardware overhead. The proposed schemes use RS codes along
rows and Hamming codes along columns and can handle both
random and MBU errors. A comparison of the area, latency,
additional storage also show that product schemes have lower
hardware and latency than plain RS codes. For example, for 8KB
page, RS(127, 121) along rows and Hamming(72. 64) along
columns have area and latency that are 30% and 43% of those of
RS(255, 239) while achieving significantly better BER
performance. To support the higher error correction capability
needed when MLC NAND Flash memories get close to the rated
lifetime, we propose a flexible scheme where a single Hamming
code along the columns is replaced by two shortened but stronger
Hamming codes. For instance, for 8KB memory, we can maintain
the BER of 107% even when the raw BER increases from
22* 1073 to 4.0 1072 by moving from RS(127,121) +
Hamming(72,64) to RS(127,121)+two Hamming(39,32). This can
be achieved by allowing for 12% longer latency and 8% additional
parity storage than that of the original scheme.

7. REFERENCES

[1] R. Micheloni, M. Picca, S.Amato, H. Schwalm, M. Scheppler, S.
Commodaro, "Non-Volatile Memories for Removable Media," Proceedings
of the IEEE , vol.97, no.1, pp.148-160, Jan. 2009.

[2] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P. H.
Siegel, JK. Wolf, “Characterizing Flash Memory: Anomalies,
Observations, and Applications”, MICRO’09, pp.24-33, Dec. 2009.

[3] N. Mielke et al, “Bit Error Rate in NAND Flash Memories”, 46th
Annual International Reliability Physics Symposium, IEEE CFPO8RPS-
CDR, Phoenix, 2008.

[4] P.Desnoyers, “Empirical Evaluation of NAND Flash Memory
Performance”, SIGOPS Oper. Syst. Rev., Vol. 44, No. 1. pp. 50-54, 2010.
[5] S. Gregori, A. Cabrini, O. Khouri, G. Torelli, “On-Chip Error
Correcting Techniques for New-Generation Flash Memories,” Proceedings
of the IEEE, vol. 91, no. 4, pp.602-616, April 2003.

[6] D. Rossi and C. Metra, “Error Correcting Strategy for High Speed and
High Density Reliable Flash Memories,” J. Electronic Testing: Theory and
Applications, vol.19, no.5, pp.511-521, Oct. 2003.

[7] H. Choi, W. Liu, and W. Sung, “VLSI Implementation of BCH Error
Correction for Multilevel Cell NAND Flash Memory,” IEEE Trans. on
VLSI Systems, vol. 18, no. 5, pp.843-847, May 2010.

[8] T. Chen, Y. Hsiao, Y. Hsing, and C. Wu, “An Adaptive-Rate Error
Correction Scheme for NAND Flash Memory,” 27th IEEE VLSI Test
Symposium, pp.53-58, 2009.

[9] R. Micheloni, et. al “A 4Gb 2b/cell NAND Flash Memory with
Embedded 5b BCH ECC for 36MB/s System Read Throughput”, IEEE
International Solid-State Circuits Conference, session 7, pp 497-506, 2006.
[10] STMicroelectronics, ST72681 ,USB 2.0 high-speed Flash drive
controller, http://www.st.com/stonline/books/pdf/docs/11352.pdf

[11] XceedlOPS SATA SSD, SMART’s Storage Solutions.
www.smartm.com/files/salesL iterature/storage/xceediops_SATA.pdf

[12] S. Li, T. Zhang, “Improving Multi-Level NAND Flash Memory
Storage Reliability Using Concatenated BCH-TCM Coding,” IEEE Trans.
on VLS| Systems, vol.18, no.10, pp 1412-1420, Oct 2010.

[13] B. Riccq G. Torelli, M. Lanzoni, A. Manstretta, H. E. Maes, D.
Montanari, and A. Modelli, “Nonvolatile multilevel memories for digital
applications,” Proceedings of the IEEE, vol. 86, no. 12, pp. 2399-2421,
Dec. 1998.

[14] F. Wrobel et al., “Simulation of Nucleon-Induced Nuclear Reactions in
a Simplified SRAM Structure: Scaling Effects on SEU and MBU Cross
Sections,” IEEE Trans. on Nuclear Science, vol. 48, no. 6, pp. 1946-1952,
Dec. 2001.

[15]J. Kim et al, “Multi-bit Error Tolerant Caches Using Two-Dimensional
Error Coding,” 40th IEEE/ACM International Symposium on
Microarchitecture, pp.197-209, 2008.

[16] B. Fu and P. Ampadu, “Burst Error Detection Hybrid ARQ with
Crosstalk-Dealy Reduction for Reliable On-chip Interconnects,” 24th IEEE
International Symposium on Defect and Fault Tolerance in VLSI Systems,
pp.440-448, 2009.

[17] C. Compagnoni, A. Spinelli, R. Gusmeroli, A. Lacaita,S. Beltrami,
A.Ghetti and A. Visconti, “First Evidence for Injection Statistics Accuracy
Limitationss in NAND Flash Constant-Current Flower-Nordheim
Programming,” IEDM Tech Dig.2007, pp.165-168.

[18] H. Lee, “High-Speed VLSI Architecture for Parallel Reed—Solomon
Decoder,” IEEE Trans. on VLSI Systems, vol. 11, no. 2, pp.288-295, April
2003.

[19] B. Yuan, Z. Wang, L. Li, M. Gao, J. Sha, and C. Zhang, “Area-
Efficient Reed—Solomon Decoder Design for Optical Communications,”
IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 56, no. 6,
pp.469-474, June 2009.

[20] Y. Emre, C. Chakrabarti, “Memory Error Compensation Technique for
JPEG2000,” IEEE Workshop on Signal Processing Systems, SiPS 2010,
pp.36-41, 2010.

