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                                     ABSTRACT 

 
Error control coding (ECC) is essential for correcting soft errors in 

Flash memories. In such memories, as the number of 

erase/program cycles increases over time, the number of errors 

increases. In this paper we propose a flexible product code based 

ECC scheme that can support ECC of higher strength when 

needed. Specifically, we propose product codes which use Reed-

Solomon (RS) codes along rows and Hamming codes along 

columns. When higher ECC is needed, the Hamming code along 

columns is replaced by two shorter Hamming codes. For instance, 

when the raw bit error rate increases from 2.6*     to 4.0*    , 

the proposed ECC scheme migrates from RS(127, 121) along rows 

and Hamming(72,64) along columns to RS(127, 121) along rows  

and two Hamming(39, 32) along columns to achieve the same  

BER of       While the resulting implementation has 12% higher 

decoding latency, it increases the lifetime of the device 

significantly. 

 

Index Terms— Flash memories, multi-level cell, error 

correction codes, product codes 

 
1. INTRODUCTION 

 
Flash memories have high storage density and are used in memory 

cards, USB flash drives, and solid-state drives [1]. We focus on 

multi-level cell (MLC) Flash memories which store 2 or more bits 

per cell by supporting 4 or more voltage states. These have even 

greater storage density and are the dominant Flash memory 

technology. 

    Unfortunately, NAND Flash memories suffer from write/read 

disturbs, data retention errors, bad block accumulation [2]-[4]. 

Also, reliability of MLC memory is lower due to reduced gap 

between adjacent threshold levels. To enhance the reliability and 

support longer life-times, combinations of hardware and software 

techniques are used. These include wear leveling, bad block 

management and garbage collection.  

  While these Flash management techniques increase the life 

time of Flash memories, they are not good at correcting soft errors. 

Error correction code (ECC) techniques have now become an 

integral part of Flash memory design [5]. While single error 

detection/correction codes, such as Hamming codes, have been 

used for single-level cell (SLC) Flash memory systems [6], in 

recent years, long linear block codes with high error correction 

capability are used. These include block codes such as the Bose-

Chaudhuri-Hocquenghem (BCH) code [7]-[9] and its subclass 

Reed-Solomon (RS) code [10][11]. Schemes based on 

concatenation of BCH codes and Trellis Coding Modulation 

(TCM) have also recently been proposed in [12].  

       Most previous ECCs are based on the fact that the error 

distribution is purely random.  However, when the cell size 

decreases in high capacity MLC Flash memories, probability of 

multiple bits upset (MBU) is likely to increase as in SRAM cells 

[13][14]. Furthermore, when the number of program/erase cycles is 

quite high, the bit error rate increases significantly and the MBU 

rate increases as well. Our simulation results show that for 72nm 

technology 2-bit MLC[4], when the number of program/erase 

cycles increase from 20k to 40K, MBU rate increases from 0.1% to 

2.3%.  

In this paper, we present product code schemes which use 

smaller constituent codes along rows and columns and achieve 

higher ECC due to cross parity checking. Such codes have less 

hardware overhead and have been successfully used in embedded 

SRAM caches [15] and interconnection networks [16]. The 

proposed product code schemes have better BER area and timing 

performance compared to single BCH and RS codes with 

comparable error correction capability. We study the performance 

of the ECC schemes for two error models: fully random error 

model and hybrid error model with 90% random errors and 10% 

MBU errors.  

First, we consider BCH+Hamming and RS+Hamming product 

codes where BCH/RS is done along the rows followed by 

Hamming along columns. Simulation results show that for the 

same codeword length and error correction capability, 

RS+Hamming has equal performance compared with 

BCH+Hamming in the random error model and slightly better 

performance in the hybrid error model. RS+Hamming has slightly 

higher redundancy (~1%) but is more attractive in terms of 

hardware complexity for similar code rate and codeword length. So 

in the rest of the paper, we focus on RS+Hamming codes. When 

higher error correction capability is needed, we migrate to a 

scheme with two shorter Hamming codes, instead of one Hamming 

code along the columns. For instance, for 8KB Flash when the raw 

BER increases from 2.6*     to 4.0*    , to achieve a BER of 

    , we use RS(127,121) with two Hamming (39, 32) instead of 

RS(127,121) with Hamming(72,64). Such a flexibility costs 12% 

longer latency and 8% additional parity storage but increases the 

lifetime of the device significantly.  
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The rest of the paper is organized as follows. Error source 

analysis and error models are presented in section 2. The proposed 

product scheme is described in section 3. The simulation results 

comparing the candidate schemes are presented in section 4. The 

hardware design followed by comparison of area and latency of the 

candidate schemes are presented in section 5. The conclusion is 

given in section 6. 

 

2. ERROR MODELS  

 

2.1. Error Sources 

There are many sources of errors in MLC Flash memories. Single 

event upset can be caused by charged particles due to sun activity 

or other ionization mechanisms [14]. Multi-bit upsets can occur 

due to a high-energy particle hitting at a low incident angle and 

striking many cells in a row. Furthermore, in MLC, the voltage 

window for threshold of each data state is smaller. Since all the 

programmed levels must be allocated in a predetermined sized 

voltage window, there is reduced spacing between adjacent 

programmed levels, making the MLC memories less reliable. Also, 

read/write operations in MLC memory can cause threshold voltage 

fluctuations, which inadvertently result in errors in consecutive bits 

[2]-[4]. 

     Another important source of error is due to gradual charge 

leakage from the floating gate resulting in voltage shift in memory 

cells, ultimately resulting in a flip in the data stored in these cells. 

Blocks that have been erased many times have a shorter data 

retention life than blocks with lower erase/program cycles [2]-[4]. 

The number of errors due to program/erase wear out increases 

from 1*     at 9000 cycles to 8*     after 15000 cycles for 

MLC Flash [2]. 

    With increased number of program/erase cycles, the number of 

MBU errors also increase as demonstrated through these 

simulations. First, using the results in [3][17], we model the     

distribution with a continuous Rayleigh distribution. The variance 

of the distribution is assumed to be a function of number of 

program/erase cycles and increases when the number of 

program/erase cycles increases. Thus for even Gray coded data, 

larger variance would result in MBU errors.   

     
                            (a)                                             (b) 

Figure 1. (a) Raw BER  and (b) MBU probability as a function of 

number of erase/program cycles. 

 

In order to determine the     variance as a function of the number 

of program/erase cycles, we match the error rate of our model with 

experimental results for MLC Flash memory in [2]. Then, we use 

curve fitting to extrapolate the results for higher number of 

erase/program cycles. Figure 1(a) shows the BER curve versus 

number of erase/program cycles. Note that when the number of 

erase/program cycles increases from 23K to 27K, the raw BER 

increases from 2.2*     to 4.0*     . Figure 1(b) shows the 

MBU probability as a function of the number of program/erase 

cycles. This is approximately 2.3% at 40K erase/program cycles. 

Since the required endurance life time of NAND Flash memories is 

expected at least    cycles [2], it is reasonable to expect that the 

burst error probability in MLC Flash will cross 10% towards the 

end of its rated lifetime.   

  

2.2. Error Models 

We consider two error models: fully random error model and a 

model based on a mixture of random and MBU (or burst) errors. 

For burst errors, we assume that the probability of MBU decreases 

exponentially as the MBU size increases.   These two models are 

described as follows.   

Random Error Model: Errors are independent and uniformly 

distributed among the cells in one page. 

Hybrid Error Model: Errors are a combination of random (90%) 

and MBU(10%) errors. The probability of a MBU error when the 

burst size is x+1 bits is 10% of the probability of a MBU error 

when the burst size is x bits. The maximum burst size is 6. Thus 

                    for       and           
    . 

 
Figure 2. MBU probability as a function of MBU size. 

 

Figure 2 shows the MBU probability statistics vs. size of MBU for 

the proposed hybrid model; The MBU probability is derived with 

respect to SEU, e.g., a 0.1 probability for 2-bit MBU in the burst 

model indicates that 10% of all SEU are caused by MBU of size 2. 

 

2.3. Performance Metrics 

We compare the different ECC schemes with respect to the 

following performance metrics: 

 Redundancy rate:  In an (n, k) linear block code, redundancy 

rate is          
Hardware area: Area of encoder and decoder in ECC block. 

Encoding/decoding latency:  Time for encoding/decoding data 

in one page. 

Bit error rate (BER):  Number of received bits that have been 

altered due to errors, divided by the total number of bits. 

 
3. PRODUCT ECC SCHEMES FOR FLASH MEMORY 

 

Product code is a technique to form a long length code with higher 

ECC capabilities using small length constituent codes. Let    be 

a    ,     linear code, and let    be a    ,    linear code. Then, a 

(    ,      ) linear code can be formed where each codeword can 

be arranged in a rectangular array of    columns and    rows such 

that every row is a codeword in   , and every column is a 

codeword in   , as shown in Figure 5. This code array can be 
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formed by first performing row (column) encoding then column 

(row) encoding on the data array of size of    *   . The cross 

parity block in the bottom right is of size (     )*          

and is obtained by encoding the row (column) parity along the 

other dimension, i.e., column (row). 
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Figure 3. Product code scheme. 

 

 

 
(a)                                                 (b) 

                                        

Figure 4. Performance comparison between BCH-Hamming and 

RS-Hamming in (a) random and (b) hybrid error models. 

 

In order to provide for high error correction capability in Flash 

memories, we propose to use a strong code with multiple error 

correction capability along at least one of the dimensions. Since 

data is stored along rows in memory, we propose to use stronger 

ECC along rows so that both random and burst errors can be dealt 

with efficiently. Furthermore, we choose a long codeword along 

this dimension to provide good coding performance. A 

consequence of this is that for fixed page size, the length of the 

codeword along the columns is much shorter and use of cyclic or 

linear block codes with multiple error correction capability along 

columns is an overkill. So we choose Hamming codes along the 

columns; they have low overhead and provide enough coding gain 

to the product code based scheme. 

      The simulation results for RS(127, 121)+Hamming(72, 64) and 

BCH(1023, 993, 3)+Hamming(72,64) for the two error models are 

illustrated in Figure 4. These coding schemes have similar 

redundancy overhead, namely 15.8% for BCH-Hamming and 

16.5% for RS-Hamming. We see that they provide similar 

performance, with RS+Hamming having a slightly better 

performance than BCH +Hamming for hybrid error model. This is 

to be expected since RS codes have better performance for burst 

errors. Also, RS(127,121)+Hamming(72,64) requires less area than 

BCH(1023, 99, 3)+Hamming(72,64) for the same throughput. 
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Figure 5. Proposed flexible ECC scheme. 

 

As mentioned earlier, as the number of erase/program cycles in 

Flash memories increases, the raw error rate increases [4]. Instead 

of designing for the worst case scenario, a mechanism where the 

system can provide error correction performance with different 

strengths is desirable.  For the proposed product scheme, we 

suggest adjusting the error correction capability of the Hamming 

codes. We keep the same RS codes for row error correction but 

split the single Hamming code along columns into two shorter and 

hence stronger Hamming codes as illustrated in Figure 5. This is a 

lot less complicated than adjusting the strength of the RS codes. 

Furthermore, parity matrix of the shorter Hamming code can be 

derived from the longer code. This removes the necessity to have 

extra circuitry for each Hamming configuration as will be 

explained in Section 5. 

Area and latency of flexible schemes slightly increase as shown 

in the following sections. Also redundancy rate of the flexible 

scheme increases due to use of shortened Hamming codes. The 

overhead is still a small price to pay compared to the increase in 

the error correction capability which is required when MLC 

NAND Flash memories get close to the rated lifetime. 

 

4. SIMULATION RESULTS 

 

In this section, we present RS+Hamming product code based 

schemes for different page sizes (section 4.1) and compare their 

performance (section 4.2).  

 

4.1. Candidate Product Codes 

Table I lists possible combinations of RS and Hamming code for 

8KB and 16KB page size.  For 8KB page, if we use RS(127,121) 

along rows, then there are 73 bits in each column. These 73 bits 

must include both information bits and parity bits of the Hamming 

codes.  Thus one Hamming(72, 64) code or two shortened 

Hamming(39, 32) codes can be used to process data along column.  

Shortened codes contain  the same number of parity bits as regular 

codes,  and extra zero bits are added after information bits during 

encoding but not stored in memory [8].  

For 16KB page, RS (127, 121) along rows results in 147 bits in 

each column in product code. One Hamming (147,138) or two 

Hamming(72, 64) codes can be used along columns. Now if 

RS(255, 247) is used along rows, then there are 64 bits in each 

column. All the 64 bits can be used to form one shortened 

Hamming (72, 64) code or two shortened Hamming (39, 32) codes 

without unused bits.  

 



 

Table I. Candidate ECC schemes for 8KB and 16KB page Flash 

memories.   
Page buffer size RS code (row) Hamming code (column) 

 

8KB 

RS(255,239)  

RS(127,121) One Hamming(72,64) 

RS(127,121) Two Hamming(39,32) 

 

16KB 

RS(255,239)  

RS(255,247) One Hamming(72,64) 

RS(255,247) Two Hamming(39,32) 

RS(127,121) One Hamming(147,138) 

RS(127,121) Two Hamming(72,64) 

 

 4.2. Performance Comparison 

Figure 6. Performance comparison of candidate schemes in random 

error model. 

 
Figure 7. Performance comparison of candidate schemes in hybrid 

error model. 

 

Figure 6 and Figure 7 show the BER performance of the candidate 

schemes for both the random and hybrid error models. For both 

error models, product RS codes have much better performance 

than BCH (1023, 943, 8) and plain RS (255, 239). While the 

performance of BCH code remains the same for both error models, 

performance of the plain RS code improves for the hybrid error 

models. Figures 6 and 7 also show the gain in performance of 

product codes when two short Hamming codes are used instead of 

one long Hamming code along columns. Table II presents the BER 

performance of the different schemes for three BER values. Note 

that for both the cases, product schemes with two shorter Hamming 

codes along columns have one decade lower BER than those with 

single long Hamming code along columns.  For instance, when raw 

BER is 4     , for 8KB paged Flash, BER is improved from 

9*     to 1*    .  

 

Table II. Performance comparison between regular and flexible 

schemes. 
 BER 

ECC Schemes Raw BER 

at 7*     

Raw BER 

at 4*     

Raw BER 

at 1*     

8KB: RS(127, 121) + 

Hamming(72, 64) 
2*     9*      3*     

8KB: RS(127, 121) + 

Hamming(39, 32)*2 
5*     1*     3*     

16KB: RS(255, 247) + 

Hamming(72, 64) 
2*     2*     7*     

16KB: RS(255, 247) + 

Hamming(39, 32)*2 
8*     2*     1*     

16KB: RS(127, 121) + 

Hamming(147,138) 
3*     2*     7*     

16KB: RS(127, 121) + 

Hamming(72, 64)*2 
7*     1.5*     6*     

 

 

Table III. Comparison of regular and flexible schemes with respect 

to number of erase/program cycles for decoded BER=     
ECC Schemes Raw BER Number of 

erase/program 

cycles(K) 

8KB: RS(127, 121) + 
Hamming(72, 64) 

2.6*10E-3 25 

8KB: RS(127, 121) + 

Hamming(39, 32)*2 

4.0*10E-3 27 

16KB: RS(255, 247) + 
Hamming(72, 64) 

2.2*10E-3 23 

16KB: RS(255, 247) + 

Hamming(39, 32)*2 

3.3*10E-3 26 

16KB: RS(127, 121) + 
Hamming(147,138) 

2.2*10E-3 23 

16KB: RS(127, 121) + 

Hamming(72, 64)*2 

4.0*10E-3 27 

 

Table III compares the performance of regular and flexible 

schemes with respect to number of erase/program cycles when the 

target (decoded) BER is     . This table is derived from Figure 7. 

We see that for 16KB memory, when raw BER increases from 

2.2*      to 4.0*                             we move from 

RS (127, 121) + Hamming(147, 138) to RS(127, 121) + two 

Hamming(72, 64). From Figure 1, we see that this translates to an 

increase in the number of erase/program cycles from 23K to 27K. 

Thus the flexible scheme helps improve the lifetime of the Flash 

memory. 

 

5. HARDWARE IMPLEMENTATION 

5.1. RS decoder Structure    

In the pipelined decoding flow, for an (n, k) RS code with t error 

correction capability, syndrome calculation part takes n cycles due 

to the serial input order of code word. The decoding delay of Key-

Equation block depends on the structure of processor element (PE) 

array. For achieving the shortest delay, a systolic array of 2t PEs is 

used and syndrome sequence is processed once by each PE serially 

[18].  For achieving the smallest area, single PE scheme with FIFO 

registers is implemented in [19]. Due to data dependence, the 

output of single PE cannot be transferred back to its input end 

directly and extra FIFO registers are needed. Assuming each PE is 

pipelined by a factor of q, 2t PE systolic array has 2t*q pipelined 

levels. During processing 2t syndromes, only 2t/(2t*q)=1/q of total 

circuitry is active. Thus, this scheme has high throughput but low 
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workload. The single PE scheme, which is active all the time, has 

2t-q extra FIFO registers.  

 

 
Figure 8. Proposed Architecture for Key-Equation block 
 

In the proposed scheme, we replace 2t-q FIFO registers of the 

single PE scheme with another PE as long as the number of extra 

FIFO registers is more than q; the corresponding architecture is 

shown in Figure 8. Thus the number of PEs in this scheme 

is       , and 2t-           FIFO registers are needed. Since all 

syndromes need to be processed 2t times, the proposed        PE 

array needs to iterate  
  

      
  times, and the latency is     

  

      
  

cycles.  Such a scheme keeps all PEs active all the time.  

Compared to the 2t PE scheme, the proposed scheme has 

significantly lower hardware overhead and slightly lower 

throughput.  

Since the delay of PE block is usually less than that of syndrome 

calculation block, we can use multiple syndrome computation units 

to “feed” syndromes of different code words to the Key-Equation 

circuitry [19].  The delay of Chien&Forney algorithm is usually 

less than 20 cycles; it always finishes processing the output of 

Key-equation block before receiving data corresponding to the 

next codeword.   
 
Table IV.  Delay of RS decoders of different code sizes 

 8KB page 16KB page 
ECC scheme Number of 

Syndrome 

Calculation 

Blocks 

Numbe

r of RS 

codes 

Decoding 

Latency 

(Cycles) 

Number 

of RS 

codes 

Decoding 

Latency 

(Cycles) 

RS(255,247) 5    33      65      
RS(255,239) 2    33      65      
RS(127,121) 3    74      148      

 

For a pipelined RS decoder, decoding delay of a page is the sum of 

syndrome calculation delay plus the delay of Key-equation and 

Chien&Forney blocks of the last codeword. Table IV describes the 

decoding delay of different RS codes for 8KB and 16KB page 

sizes. 

     Table V presents the gate counts and the estimated area of the 

different RS decoders. These are based on synthesis results in 

45nm technology using Synopsys cell library. The area of 

syndrome calculation, key equation and Chien&Forney blocks do 

not include interconnection between these three blocks.  

 
TableV. Comparison of gate counts and estimated area of RS decoders 
 Syndrome 

Calculation 

Key-Equation Chien&Forney TotalArea

(   ) 

RS(127,121) 525*3 1478+FSM 2822 5319 

RS(255,247) 800*5 (1172+FSM)*2+2*8*4 5880 7513 

RS(255,239) 1600*2 (1172+FSM)*3+1*7*4 7600 12317 

5.2. Hamming code Hardware Structure 

Here we describe a Hamming code encoder structure which 

supports encoding codes with different strengths using the same 

hardware [20]. An important characteristic of the Hamming codes 

is that the parity generator matrix for shorter code (stronger) can be 

derived from the parity generator matrix of the longer code 

(weaker).  

     Consider the parity generator matrix of the (72, 64) code 

illustrated in Figure 9.  It consists of 8 rows (equal to number of 

parity bits). The first half of this code (column 1 to 32) except the 

seventh row can be used to generate the parity matrix of (39, 32) 

code since the seventh row consists of all zeros. Although we need 

additional circuitry compared to single-error-correction-double-

error-detection (SECDED) implementation which is optimized for 

a single code, generating codes like this has the ability to adjust 

coding strength with slight increase in circuit area.                      
 

 

 
Figure 9.  Parity generation for (39, 32) from (72, 64). 
 

For (72, 64), the input bits b1 through b32 are sent to one parity 

generator and bits b33 through b64 are sent to the second parity 

generator. The combiner combines the two sets of parity bits and 

generates parity bits for the (72, 64) code. When higher coding 

capability is required, as in (39, 32), the second parity generator 

and combiner are disabled and the outputs of the first generator are 

output. The decoder can be implemented using a similar 

hierarchical structure. Synthesis results of two Hamming 

encoder/decoders are listed in Table VI.      

       

               Table VI. Synthesis results of Hamming encoder/decoder. 
          Hamming (72, 64) Hamming (39, 32) 

   Encoder Decode Encoder Decoder 

Cell area(   ) 314 575 314 575 

Worst case delay(ps) 390 1142 270 640 

Active power(uw) 230 347 93 455 

Leakage power (uw) 3.12 5.07 3.12 5.07 

 

 5.3. Trade-offs Between Schemes 

Table VII presents the area, latency and redundant rate of 

candidate product schemes and plain RS code. The area and 

latency estimates are based on the results presented in Table V for 

RS decoders and Table VI for Hamming decoders. The BER 

results are obtained from Figure 7.  

For 8KB page size, product code with RS(127,121) with one 

Hamming(72, 64) (Scheme B1) or two Hamming(39,32) (Scheme 

B2) have the same area. This is because the same circuitry is used 

to support both the schemes. The hardware essentially consists of 

one RS(127,121) coder and two Hamming(72,64) coders. When 

Scheme B1 is invoked, two columns are processed at a time while 

when Scheme B2 is invoked, only part of the Hamming(72,64) 



 

coder is used and only one column is processed at a time. This is 

why Scheme B1 has lower encoding/decoding latency compared to 

Scheme B2. Scheme B2 has significantly higher BER performance 

but requires larger parity storage. But this is a small price to pay 

for the increased Flash memory lifetime. Compared to Scheme A, 

both Schemes B1 and B2 have significantly better BER 

performance, lower area and lower latency but require more parity 

storage.  

For 16KB page size, Schemes D1 and D2 share the same 

circuitry and thus have the same area. The same is true for 

Schemes E1 and E2. Schemes D1 and D2 that are based on 

RS(255,247) have higher area but lower latency compared to 

schemes E1 and E2 that are based on RS(127,121). Also schemes 

E1 and E2 have lower parity storage compared to schemes D1 and 

D2. Note that for both schemes of type D and E, the performance 

improves by almost a decade when two shorter Hamming codes 

are used (instead of one larger one) along the columns. Also, all 

product schemes (D1, D2, E1 and E2) have significantly better 

performance in terms of BER, area and latency compared to the RS 

only scheme; the only drawback is the increased parity storage. 

 
Table VII.  Area, Latency, BER and Redundancy rate of ECC Schemes. 
Notation: RS1 is RS(255, 239), RS2 is RS(127, 121), RS3 is RS(255, 247); 

H1 is Hamming(72, 64), H2 is Hamming(39, 32) and H3 is Hamming(147, 

138) 

 
  

ECC Schemes 

 

Area(um2) 

Decoding 

Latency 

(Cycles) 

Encoding 

Latency 

(Cycles) 

BER at 

5*      
Redundancy     

Rate 

8 

K

B 

A:RS1 12317 4449 4335        6.2% 

B1:RS2+H1  

7097 

3674 3620        16.5% 

B2:RS2+H2*2 4118 4064        24% 

 

1

6 

K

B 

C:RS1 12317 8529 8415        6.2% 

D1:RS3+H1  

9291 

4393 4335        12.2% 

D2:RS3+H2*2 5413 5355        25% 

E1:RS2+H3  

8875 

6849 6795 8 *      10.5% 

E2:RS2+H1*2 7293 7185        15% 

 

6. CONCLUSION 

     In this paper, we propose product code schemes to handle high 

error correction capability of NAND Flash memories with reduced 

hardware overhead. The proposed schemes use RS codes along 

rows and Hamming codes along columns and can handle both 

random and MBU errors. A comparison of the area, latency, 

additional storage also show that product schemes have lower 

hardware and latency than plain RS codes. For example, for 8KB 

page, RS(127, 121) along rows and Hamming(72. 64) along 

columns have area and latency that are 30% and 43% of those of 

RS(255, 239) while achieving significantly better BER 

performance. To support the higher error correction capability 

needed when MLC NAND Flash memories get close to the rated 

lifetime, we propose a flexible scheme where a single Hamming 

code along the columns is replaced by two shortened but stronger 

Hamming codes. For instance, for 8KB memory, we can maintain 

the BER of      even when the raw BER increases from 

2.2*       to 4.0*                       RS(127,121) + 

Hamming(72,64) to RS(127,121)+two Hamming(39,32).  This can 

be achieved by allowing for 12% longer latency and 8% additional 

parity storage than that of the original scheme. 
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