

FLEXIBLE PRODUCT CODE-BASED ECC SCHEMES FOR MLC NAND

FLASH MEMORIES

C. Yang
1
, Y. Emre

1
, C. Chakrabarti

1
 and T.Mudge

2

1
School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287

2
Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI 48109

{Chengen.yang,yemre,chaitali}@asu.edu, tnm@umich.edu

 ABSTRACT

Error control coding (ECC) is essential for correcting soft errors in

Flash memories. In such memories, as the number of

erase/program cycles increases over time, the number of errors

increases. In this paper we propose a flexible product code based

ECC scheme that can support ECC of higher strength when

needed. Specifically, we propose product codes which use Reed-

Solomon (RS) codes along rows and Hamming codes along

columns. When higher ECC is needed, the Hamming code along

columns is replaced by two shorter Hamming codes. For instance,

when the raw bit error rate increases from 2.6* to 4.0* ,

the proposed ECC scheme migrates from RS(127, 121) along rows

and Hamming(72,64) along columns to RS(127, 121) along rows

and two Hamming(39, 32) along columns to achieve the same

BER of While the resulting implementation has 12% higher

decoding latency, it increases the lifetime of the device

significantly.

Index Terms— Flash memories, multi-level cell, error

correction codes, product codes

1. INTRODUCTION

Flash memories have high storage density and are used in memory

cards, USB flash drives, and solid-state drives [1]. We focus on

multi-level cell (MLC) Flash memories which store 2 or more bits

per cell by supporting 4 or more voltage states. These have even

greater storage density and are the dominant Flash memory

technology.

 Unfortunately, NAND Flash memories suffer from write/read

disturbs, data retention errors, bad block accumulation [2]-[4].

Also, reliability of MLC memory is lower due to reduced gap

between adjacent threshold levels. To enhance the reliability and

support longer life-times, combinations of hardware and software

techniques are used. These include wear leveling, bad block

management and garbage collection.

 While these Flash management techniques increase the life

time of Flash memories, they are not good at correcting soft errors.

Error correction code (ECC) techniques have now become an

integral part of Flash memory design [5]. While single error

detection/correction codes, such as Hamming codes, have been

used for single-level cell (SLC) Flash memory systems [6], in

recent years, long linear block codes with high error correction

capability are used. These include block codes such as the Bose-

Chaudhuri-Hocquenghem (BCH) code [7]-[9] and its subclass

Reed-Solomon (RS) code [10][11]. Schemes based on

concatenation of BCH codes and Trellis Coding Modulation

(TCM) have also recently been proposed in [12].

 Most previous ECCs are based on the fact that the error

distribution is purely random. However, when the cell size

decreases in high capacity MLC Flash memories, probability of

multiple bits upset (MBU) is likely to increase as in SRAM cells

[13][14]. Furthermore, when the number of program/erase cycles is

quite high, the bit error rate increases significantly and the MBU

rate increases as well. Our simulation results show that for 72nm

technology 2-bit MLC[4], when the number of program/erase

cycles increase from 20k to 40K, MBU rate increases from 0.1% to

2.3%.

In this paper, we present product code schemes which use

smaller constituent codes along rows and columns and achieve

higher ECC due to cross parity checking. Such codes have less

hardware overhead and have been successfully used in embedded

SRAM caches [15] and interconnection networks [16]. The

proposed product code schemes have better BER area and timing

performance compared to single BCH and RS codes with

comparable error correction capability. We study the performance

of the ECC schemes for two error models: fully random error

model and hybrid error model with 90% random errors and 10%

MBU errors.

First, we consider BCH+Hamming and RS+Hamming product

codes where BCH/RS is done along the rows followed by

Hamming along columns. Simulation results show that for the

same codeword length and error correction capability,

RS+Hamming has equal performance compared with

BCH+Hamming in the random error model and slightly better

performance in the hybrid error model. RS+Hamming has slightly

higher redundancy (~1%) but is more attractive in terms of

hardware complexity for similar code rate and codeword length. So

in the rest of the paper, we focus on RS+Hamming codes. When

higher error correction capability is needed, we migrate to a

scheme with two shorter Hamming codes, instead of one Hamming

code along the columns. For instance, for 8KB Flash when the raw

BER increases from 2.6* to 4.0* , to achieve a BER of

 , we use RS(127,121) with two Hamming (39, 32) instead of

RS(127,121) with Hamming(72,64). Such a flexibility costs 12%

longer latency and 8% additional parity storage but increases the

lifetime of the device significantly.

trev
Typewritten Text

trev
Typewritten Text
IEEE Workshop on Signal Processing Systems, (SiPS 2011), October 4-7 2011, Beirut, Lebanon.

The rest of the paper is organized as follows. Error source

analysis and error models are presented in section 2. The proposed

product scheme is described in section 3. The simulation results

comparing the candidate schemes are presented in section 4. The

hardware design followed by comparison of area and latency of the

candidate schemes are presented in section 5. The conclusion is

given in section 6.

2. ERROR MODELS

2.1. Error Sources

There are many sources of errors in MLC Flash memories. Single

event upset can be caused by charged particles due to sun activity

or other ionization mechanisms [14]. Multi-bit upsets can occur

due to a high-energy particle hitting at a low incident angle and

striking many cells in a row. Furthermore, in MLC, the voltage

window for threshold of each data state is smaller. Since all the

programmed levels must be allocated in a predetermined sized

voltage window, there is reduced spacing between adjacent

programmed levels, making the MLC memories less reliable. Also,

read/write operations in MLC memory can cause threshold voltage

fluctuations, which inadvertently result in errors in consecutive bits

[2]-[4].

 Another important source of error is due to gradual charge

leakage from the floating gate resulting in voltage shift in memory

cells, ultimately resulting in a flip in the data stored in these cells.

Blocks that have been erased many times have a shorter data

retention life than blocks with lower erase/program cycles [2]-[4].

The number of errors due to program/erase wear out increases

from 1* at 9000 cycles to 8* after 15000 cycles for

MLC Flash [2].

 With increased number of program/erase cycles, the number of

MBU errors also increase as demonstrated through these

simulations. First, using the results in [3][17], we model the

distribution with a continuous Rayleigh distribution. The variance

of the distribution is assumed to be a function of number of

program/erase cycles and increases when the number of

program/erase cycles increases. Thus for even Gray coded data,

larger variance would result in MBU errors.

 (a) (b)

Figure 1. (a) Raw BER and (b) MBU probability as a function of

number of erase/program cycles.

In order to determine the variance as a function of the number

of program/erase cycles, we match the error rate of our model with

experimental results for MLC Flash memory in [2]. Then, we use

curve fitting to extrapolate the results for higher number of

erase/program cycles. Figure 1(a) shows the BER curve versus

number of erase/program cycles. Note that when the number of

erase/program cycles increases from 23K to 27K, the raw BER

increases from 2.2* to 4.0* . Figure 1(b) shows the

MBU probability as a function of the number of program/erase

cycles. This is approximately 2.3% at 40K erase/program cycles.

Since the required endurance life time of NAND Flash memories is

expected at least cycles [2], it is reasonable to expect that the

burst error probability in MLC Flash will cross 10% towards the

end of its rated lifetime.

2.2. Error Models

We consider two error models: fully random error model and a

model based on a mixture of random and MBU (or burst) errors.

For burst errors, we assume that the probability of MBU decreases

exponentially as the MBU size increases. These two models are

described as follows.

Random Error Model: Errors are independent and uniformly

distributed among the cells in one page.

Hybrid Error Model: Errors are a combination of random (90%)

and MBU(10%) errors. The probability of a MBU error when the

burst size is x+1 bits is 10% of the probability of a MBU error

when the burst size is x bits. The maximum burst size is 6. Thus

 for and
 .

Figure 2. MBU probability as a function of MBU size.

Figure 2 shows the MBU probability statistics vs. size of MBU for

the proposed hybrid model; The MBU probability is derived with

respect to SEU, e.g., a 0.1 probability for 2-bit MBU in the burst

model indicates that 10% of all SEU are caused by MBU of size 2.

2.3. Performance Metrics

We compare the different ECC schemes with respect to the

following performance metrics:

 Redundancy rate: In an (n, k) linear block code, redundancy

rate is
Hardware area: Area of encoder and decoder in ECC block.

Encoding/decoding latency: Time for encoding/decoding data

in one page.

Bit error rate (BER): Number of received bits that have been

altered due to errors, divided by the total number of bits.

3. PRODUCT ECC SCHEMES FOR FLASH MEMORY

Product code is a technique to form a long length code with higher

ECC capabilities using small length constituent codes. Let be

a , linear code, and let be a , linear code. Then, a

(,) linear code can be formed where each codeword can

be arranged in a rectangular array of columns and rows such

that every row is a codeword in , and every column is a

codeword in , as shown in Figure 5. This code array can be

0 10 20 30 40
0

0.005

0.01

0.015

0.02

Erase/program Cycles (k)

R
a
w

 e
rr

o
r

ra
te

0 10 20 30 40
0

0.5

1

1.5

2

2.5

Erase/Program Cycle (k)

M
B

U
 R

a
te

formed by first performing row (column) encoding then column

(row) encoding on the data array of size of * . The cross

parity block in the bottom right is of size ()*

and is obtained by encoding the row (column) parity along the

other dimension, i.e., column (row).

Information
Column&

cross parity

Information

Message

Row

Coding(k1,n1)

Column

Coding(k2,n2)

Row

Parity

Column

Parity
Cross

Parity

Memory

Bank

Page BufferRow parity

k1 n1-k1

k2

n2-k2

Figure 3. Product code scheme.

(a) (b)

Figure 4. Performance comparison between BCH-Hamming and

RS-Hamming in (a) random and (b) hybrid error models.

In order to provide for high error correction capability in Flash

memories, we propose to use a strong code with multiple error

correction capability along at least one of the dimensions. Since

data is stored along rows in memory, we propose to use stronger

ECC along rows so that both random and burst errors can be dealt

with efficiently. Furthermore, we choose a long codeword along

this dimension to provide good coding performance. A

consequence of this is that for fixed page size, the length of the

codeword along the columns is much shorter and use of cyclic or

linear block codes with multiple error correction capability along

columns is an overkill. So we choose Hamming codes along the

columns; they have low overhead and provide enough coding gain

to the product code based scheme.

 The simulation results for RS(127, 121)+Hamming(72, 64) and

BCH(1023, 993, 3)+Hamming(72,64) for the two error models are

illustrated in Figure 4. These coding schemes have similar

redundancy overhead, namely 15.8% for BCH-Hamming and

16.5% for RS-Hamming. We see that they provide similar

performance, with RS+Hamming having a slightly better

performance than BCH +Hamming for hybrid error model. This is

to be expected since RS codes have better performance for burst

errors. Also, RS(127,121)+Hamming(72,64) requires less area than

BCH(1023, 99, 3)+Hamming(72,64) for the same throughput.

RS

…

H
am

m
ing(72, 64)

Row Parity

C
olum

n

P
arity

Cross Parity

RS

H
am

m
ing(39, 32)

…

Row Parity

C
olum

n

P
arity

Larger Cross Parity

H
am

m
ing(39, 32)

…

…

Figure 5. Proposed flexible ECC scheme.

As mentioned earlier, as the number of erase/program cycles in

Flash memories increases, the raw error rate increases [4]. Instead

of designing for the worst case scenario, a mechanism where the

system can provide error correction performance with different

strengths is desirable. For the proposed product scheme, we

suggest adjusting the error correction capability of the Hamming

codes. We keep the same RS codes for row error correction but

split the single Hamming code along columns into two shorter and

hence stronger Hamming codes as illustrated in Figure 5. This is a

lot less complicated than adjusting the strength of the RS codes.

Furthermore, parity matrix of the shorter Hamming code can be

derived from the longer code. This removes the necessity to have

extra circuitry for each Hamming configuration as will be

explained in Section 5.

Area and latency of flexible schemes slightly increase as shown

in the following sections. Also redundancy rate of the flexible

scheme increases due to use of shortened Hamming codes. The

overhead is still a small price to pay compared to the increase in

the error correction capability which is required when MLC

NAND Flash memories get close to the rated lifetime.

4. SIMULATION RESULTS

In this section, we present RS+Hamming product code based

schemes for different page sizes (section 4.1) and compare their

performance (section 4.2).

4.1. Candidate Product Codes

Table I lists possible combinations of RS and Hamming code for

8KB and 16KB page size. For 8KB page, if we use RS(127,121)

along rows, then there are 73 bits in each column. These 73 bits

must include both information bits and parity bits of the Hamming

codes. Thus one Hamming(72, 64) code or two shortened

Hamming(39, 32) codes can be used to process data along column.

Shortened codes contain the same number of parity bits as regular

codes, and extra zero bits are added after information bits during

encoding but not stored in memory [8].

For 16KB page, RS (127, 121) along rows results in 147 bits in

each column in product code. One Hamming (147,138) or two

Hamming(72, 64) codes can be used along columns. Now if

RS(255, 247) is used along rows, then there are 64 bits in each

column. All the 64 bits can be used to form one shortened

Hamming (72, 64) code or two shortened Hamming (39, 32) codes

without unused bits.

Table I. Candidate ECC schemes for 8KB and 16KB page Flash

memories.
Page buffer size RS code (row) Hamming code (column)

8KB

RS(255,239)

RS(127,121) One Hamming(72,64)

RS(127,121) Two Hamming(39,32)

16KB

RS(255,239)

RS(255,247) One Hamming(72,64)

RS(255,247) Two Hamming(39,32)

RS(127,121) One Hamming(147,138)

RS(127,121) Two Hamming(72,64)

 4.2. Performance Comparison

Figure 6. Performance comparison of candidate schemes in random

error model.

Figure 7. Performance comparison of candidate schemes in hybrid

error model.

Figure 6 and Figure 7 show the BER performance of the candidate

schemes for both the random and hybrid error models. For both

error models, product RS codes have much better performance

than BCH (1023, 943, 8) and plain RS (255, 239). While the

performance of BCH code remains the same for both error models,

performance of the plain RS code improves for the hybrid error

models. Figures 6 and 7 also show the gain in performance of

product codes when two short Hamming codes are used instead of

one long Hamming code along columns. Table II presents the BER

performance of the different schemes for three BER values. Note

that for both the cases, product schemes with two shorter Hamming

codes along columns have one decade lower BER than those with

single long Hamming code along columns. For instance, when raw

BER is 4 , for 8KB paged Flash, BER is improved from

9* to 1* .

Table II. Performance comparison between regular and flexible

schemes.
 BER

ECC Schemes Raw BER

at 7*

Raw BER

at 4*

Raw BER

at 1*

8KB: RS(127, 121) +

Hamming(72, 64)
2* 9* 3*

8KB: RS(127, 121) +

Hamming(39, 32)*2
5* 1* 3*

16KB: RS(255, 247) +

Hamming(72, 64)
2* 2* 7*

16KB: RS(255, 247) +

Hamming(39, 32)*2
8* 2* 1*

16KB: RS(127, 121) +

Hamming(147,138)
3* 2* 7*

16KB: RS(127, 121) +

Hamming(72, 64)*2
7* 1.5* 6*

Table III. Comparison of regular and flexible schemes with respect

to number of erase/program cycles for decoded BER=
ECC Schemes Raw BER Number of

erase/program

cycles(K)

8KB: RS(127, 121) +
Hamming(72, 64)

2.6*10E-3 25

8KB: RS(127, 121) +

Hamming(39, 32)*2

4.0*10E-3 27

16KB: RS(255, 247) +
Hamming(72, 64)

2.2*10E-3 23

16KB: RS(255, 247) +

Hamming(39, 32)*2

3.3*10E-3 26

16KB: RS(127, 121) +
Hamming(147,138)

2.2*10E-3 23

16KB: RS(127, 121) +

Hamming(72, 64)*2

4.0*10E-3 27

Table III compares the performance of regular and flexible

schemes with respect to number of erase/program cycles when the

target (decoded) BER is . This table is derived from Figure 7.

We see that for 16KB memory, when raw BER increases from

2.2* to 4.0* we move from

RS (127, 121) + Hamming(147, 138) to RS(127, 121) + two

Hamming(72, 64). From Figure 1, we see that this translates to an

increase in the number of erase/program cycles from 23K to 27K.

Thus the flexible scheme helps improve the lifetime of the Flash

memory.

5. HARDWARE IMPLEMENTATION

5.1. RS decoder Structure

In the pipelined decoding flow, for an (n, k) RS code with t error

correction capability, syndrome calculation part takes n cycles due

to the serial input order of code word. The decoding delay of Key-

Equation block depends on the structure of processor element (PE)

array. For achieving the shortest delay, a systolic array of 2t PEs is

used and syndrome sequence is processed once by each PE serially

[18]. For achieving the smallest area, single PE scheme with FIFO

registers is implemented in [19]. Due to data dependence, the

output of single PE cannot be transferred back to its input end

directly and extra FIFO registers are needed. Assuming each PE is

pipelined by a factor of q, 2t PE systolic array has 2t*q pipelined

levels. During processing 2t syndromes, only 2t/(2t*q)=1/q of total

circuitry is active. Thus, this scheme has high throughput but low

 0.01 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.002 0.001 0.0009
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Raw Bit Error Rate

B
it

E
rr

o
r

R
a

te
 a

ft
e

r
D

e
co

d
in

g

RS(255,239)

BCH(1023,943,8)

16KB:RS(127,121)+Hamming(147,138)

16KB:RS(127,121)+Hamming(72,64)*2

16KB:RS(255,247)+Hamming(72,64)

16KB:RS(255,247)+Hamming(39,32)*2

8KB:RS(127,121)+Hamming(72,64)

8KB:RS(127,121)+Hamming(39,32)*2

 0.01 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.002 0.001 0.0009
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Raw Bit Error Rate

B
it
 E

rr
o

r
R

a
te

 a
ft

e
r

D
e

c
o

d
in

g

RS(255,239)

BCH(1023,943,8)

16KB:RS(127,121)+Hamming(147,138)

16KB:RS(127,121)+Hamming(72,64)*2

16KB:RS(255,247)+Hamming(72,64)

16KB:RS(255,247)+Hamming(39,32)*2

8KB:RS(127,121)+Hamming(72,64)

8KB:RS(127,121)+Hamming(39,32)*2

workload. The single PE scheme, which is active all the time, has

2t-q extra FIFO registers.

Figure 8. Proposed Architecture for Key-Equation block

In the proposed scheme, we replace 2t-q FIFO registers of the

single PE scheme with another PE as long as the number of extra

FIFO registers is more than q; the corresponding architecture is

shown in Figure 8. Thus the number of PEs in this scheme

is , and 2t- FIFO registers are needed. Since all

syndromes need to be processed 2t times, the proposed PE

array needs to iterate

 times, and the latency is

cycles. Such a scheme keeps all PEs active all the time.

Compared to the 2t PE scheme, the proposed scheme has

significantly lower hardware overhead and slightly lower

throughput.

Since the delay of PE block is usually less than that of syndrome

calculation block, we can use multiple syndrome computation units

to “feed” syndromes of different code words to the Key-Equation

circuitry [19]. The delay of Chien&Forney algorithm is usually

less than 20 cycles; it always finishes processing the output of

Key-equation block before receiving data corresponding to the

next codeword.

Table IV. Delay of RS decoders of different code sizes

 8KB page 16KB page
ECC scheme Number of

Syndrome

Calculation

Blocks

Numbe

r of RS

codes

Decoding

Latency

(Cycles)

Number

of RS

codes

Decoding

Latency

(Cycles)

RS(255,247) 5 33 65
RS(255,239) 2 33 65
RS(127,121) 3 74 148

For a pipelined RS decoder, decoding delay of a page is the sum of

syndrome calculation delay plus the delay of Key-equation and

Chien&Forney blocks of the last codeword. Table IV describes the

decoding delay of different RS codes for 8KB and 16KB page

sizes.

 Table V presents the gate counts and the estimated area of the

different RS decoders. These are based on synthesis results in

45nm technology using Synopsys cell library. The area of

syndrome calculation, key equation and Chien&Forney blocks do

not include interconnection between these three blocks.

TableV. Comparison of gate counts and estimated area of RS decoders
 Syndrome

Calculation

Key-Equation Chien&Forney TotalArea

()

RS(127,121) 525*3 1478+FSM 2822 5319

RS(255,247) 800*5 (1172+FSM)*2+2*8*4 5880 7513

RS(255,239) 1600*2 (1172+FSM)*3+1*7*4 7600 12317

5.2. Hamming code Hardware Structure

Here we describe a Hamming code encoder structure which

supports encoding codes with different strengths using the same

hardware [20]. An important characteristic of the Hamming codes

is that the parity generator matrix for shorter code (stronger) can be

derived from the parity generator matrix of the longer code

(weaker).

 Consider the parity generator matrix of the (72, 64) code

illustrated in Figure 9. It consists of 8 rows (equal to number of

parity bits). The first half of this code (column 1 to 32) except the

seventh row can be used to generate the parity matrix of (39, 32)

code since the seventh row consists of all zeros. Although we need

additional circuitry compared to single-error-correction-double-

error-detection (SECDED) implementation which is optimized for

a single code, generating codes like this has the ability to adjust

coding strength with slight increase in circuit area.

Figure 9. Parity generation for (39, 32) from (72, 64).

For (72, 64), the input bits b1 through b32 are sent to one parity

generator and bits b33 through b64 are sent to the second parity

generator. The combiner combines the two sets of parity bits and

generates parity bits for the (72, 64) code. When higher coding

capability is required, as in (39, 32), the second parity generator

and combiner are disabled and the outputs of the first generator are

output. The decoder can be implemented using a similar

hierarchical structure. Synthesis results of two Hamming

encoder/decoders are listed in Table VI.

 Table VI. Synthesis results of Hamming encoder/decoder.
 Hamming (72, 64) Hamming (39, 32)

 Encoder Decode Encoder Decoder

Cell area() 314 575 314 575

Worst case delay(ps) 390 1142 270 640

Active power(uw) 230 347 93 455

Leakage power (uw) 3.12 5.07 3.12 5.07

 5.3. Trade-offs Between Schemes

Table VII presents the area, latency and redundant rate of

candidate product schemes and plain RS code. The area and

latency estimates are based on the results presented in Table V for

RS decoders and Table VI for Hamming decoders. The BER

results are obtained from Figure 7.

For 8KB page size, product code with RS(127,121) with one

Hamming(72, 64) (Scheme B1) or two Hamming(39,32) (Scheme

B2) have the same area. This is because the same circuitry is used

to support both the schemes. The hardware essentially consists of

one RS(127,121) coder and two Hamming(72,64) coders. When

Scheme B1 is invoked, two columns are processed at a time while

when Scheme B2 is invoked, only part of the Hamming(72,64)

coder is used and only one column is processed at a time. This is

why Scheme B1 has lower encoding/decoding latency compared to

Scheme B2. Scheme B2 has significantly higher BER performance

but requires larger parity storage. But this is a small price to pay

for the increased Flash memory lifetime. Compared to Scheme A,

both Schemes B1 and B2 have significantly better BER

performance, lower area and lower latency but require more parity

storage.

For 16KB page size, Schemes D1 and D2 share the same

circuitry and thus have the same area. The same is true for

Schemes E1 and E2. Schemes D1 and D2 that are based on

RS(255,247) have higher area but lower latency compared to

schemes E1 and E2 that are based on RS(127,121). Also schemes

E1 and E2 have lower parity storage compared to schemes D1 and

D2. Note that for both schemes of type D and E, the performance

improves by almost a decade when two shorter Hamming codes

are used (instead of one larger one) along the columns. Also, all

product schemes (D1, D2, E1 and E2) have significantly better

performance in terms of BER, area and latency compared to the RS

only scheme; the only drawback is the increased parity storage.

Table VII. Area, Latency, BER and Redundancy rate of ECC Schemes.
Notation: RS1 is RS(255, 239), RS2 is RS(127, 121), RS3 is RS(255, 247);

H1 is Hamming(72, 64), H2 is Hamming(39, 32) and H3 is Hamming(147,

138)

ECC Schemes

Area(um2)

Decoding

Latency

(Cycles)

Encoding

Latency

(Cycles)

BER at

5*
Redundancy

Rate

8

K

B

A:RS1 12317 4449 4335 6.2%

B1:RS2+H1

7097

3674 3620 16.5%

B2:RS2+H2*2 4118 4064 24%

1

6

K

B

C:RS1 12317 8529 8415 6.2%

D1:RS3+H1

9291

4393 4335 12.2%

D2:RS3+H2*2 5413 5355 25%

E1:RS2+H3

8875

6849 6795 8 * 10.5%

E2:RS2+H1*2 7293 7185 15%

6. CONCLUSION

 In this paper, we propose product code schemes to handle high

error correction capability of NAND Flash memories with reduced

hardware overhead. The proposed schemes use RS codes along

rows and Hamming codes along columns and can handle both

random and MBU errors. A comparison of the area, latency,

additional storage also show that product schemes have lower

hardware and latency than plain RS codes. For example, for 8KB

page, RS(127, 121) along rows and Hamming(72. 64) along

columns have area and latency that are 30% and 43% of those of

RS(255, 239) while achieving significantly better BER

performance. To support the higher error correction capability

needed when MLC NAND Flash memories get close to the rated

lifetime, we propose a flexible scheme where a single Hamming

code along the columns is replaced by two shortened but stronger

Hamming codes. For instance, for 8KB memory, we can maintain

the BER of even when the raw BER increases from

2.2* to 4.0* RS(127,121) +

Hamming(72,64) to RS(127,121)+two Hamming(39,32). This can

be achieved by allowing for 12% longer latency and 8% additional

parity storage than that of the original scheme.

7. REFERENCES

[1] R. Micheloni, M. Picca, S.Amato, H. Schwalm, M. Scheppler, S.
Commodaro, "Non-Volatile Memories for Removable Media," Proceedings

of the IEEE , vol.97, no.1, pp.148-160, Jan. 2009.

[2] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P. H.
Siegel, J.K. Wolf, “Characterizing Flash Memory: Anomalies,

Observations, and Applications”, MICRO’09, pp.24-33, Dec. 2009.

[3] N. Mielke et al, “Bit Error Rate in NAND Flash Memories”, 46th
Annual International Reliability Physics Symposium, IEEE CFP08RPS-

CDR, Phoenix, 2008.

[4] P.Desnoyers, “Empirical Evaluation of NAND Flash Memory
Performance”, SIGOPS Oper. Syst. Rev., Vol. 44, No. 1. pp. 50-54, 2010.

[5] S. Gregori, A. Cabrini, O. Khouri, G. Torelli, “On-Chip Error
Correcting Techniques for New-Generation Flash Memories,” Proceedings

of the IEEE, vol. 91, no. 4, pp.602-616, April 2003.

[6] D. Rossi and C. Metra, “Error Correcting Strategy for High Speed and
High Density Reliable Flash Memories,” J. Electronic Testing: Theory and

Applications, vol.19, no.5, pp.511-521, Oct. 2003.

[7] H. Choi, W. Liu, and W. Sung, “VLSI Implementation of BCH Error
Correction for Multilevel Cell NAND Flash Memory,” IEEE Trans. on

VLSI Systems, vol. 18, no. 5, pp.843-847, May 2010.

[8] T. Chen, Y. Hsiao, Y. Hsing, and C. Wu, “An Adaptive-Rate Error
Correction Scheme for NAND Flash Memory,” 27th IEEE VLSI Test

Symposium, pp.53-58, 2009.

[9] R. Micheloni, et. al “A 4Gb 2b/cell NAND Flash Memory with
Embedded 5b BCH ECC for 36MB/s System Read Throughput”, IEEE

International Solid-State Circuits Conference, session 7, pp 497-506, 2006.

[10] STMicroelectronics, ST72681 ,USB 2.0 high-speed Flash drive
controller, http://www.st.com/stonline/books/pdf/docs/11352.pdf

[11] XceedIOPS SATA SSD, SMART’s Storage Solutions.

www.smartm.com/files/salesLiterature/storage/xceediops_SATA.pdf
[12] S. Li, T. Zhang, “Improving Multi-Level NAND Flash Memory

Storage Reliability Using Concatenated BCH-TCM Coding,” IEEE Trans.

on VLSI Systems, vol.18, no.10, pp 1412-1420, Oct 2010.
[13] B. Riccò, G. Torelli, M. Lanzoni, A. Manstretta, H. E. Maes, D.

Montanari, and A. Modelli, “Nonvolatile multilevel memories for digital

applications,” Proceedings of the IEEE, vol. 86, no. 12, pp. 2399–2421,
Dec. 1998.

[14] F. Wrobel et al., “Simulation of Nucleon-Induced Nuclear Reactions in

a Simplified SRAM Structure: Scaling Effects on SEU and MBU Cross
Sections,” IEEE Trans. on Nuclear Science, vol. 48, no. 6, pp. 1946-1952,

Dec. 2001.

[15] J. Kim et al, “Multi-bit Error Tolerant Caches Using Two-Dimensional
Error Coding,” 40th IEEE/ACM International Symposium on

Microarchitecture, pp.197-209, 2008.

[16] B. Fu and P. Ampadu, “Burst Error Detection Hybrid ARQ with
Crosstalk-Dealy Reduction for Reliable On-chip Interconnects,” 24th IEEE

International Symposium on Defect and Fault Tolerance in VLSI Systems,

pp.440-448, 2009.
[17] C. Compagnoni, A. Spinelli, R. Gusmeroli, A. Lacaita,S. Beltrami,

A.Ghetti and A. Visconti, “First Evidence for Injection Statistics Accuracy

Limitationss in NAND Flash Constant-Current Flower-Nordheim
Programming,” IEDM Tech Dig.2007, pp.165-168.

[18] H. Lee, “High-Speed VLSI Architecture for Parallel Reed–Solomon

Decoder,” IEEE Trans. on VLSI Systems, vol. 11, no. 2, pp.288-295, April
2003.

[19] B. Yuan, Z. Wang, L. Li, M. Gao, J. Sha, and C. Zhang, “Area-

Efficient Reed–Solomon Decoder Design for Optical Communications,”
IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 56, no. 6,

pp.469-474, June 2009.

[20] Y. Emre, C. Chakrabarti, “Memory Error Compensation Technique for
JPEG2000,” IEEE Workshop on Signal Processing Systems, SiPS 2010,

pp.36-41, 2010.

